

MAXWELL'S ADDRESS TO THE MATHEMATICAL AND PHYSICAL SECTIONS OF THE BRITISH ASSOCIATION

Liverpool, September 15, 1870.

I have been carried by the penetrating insight and forcible expression of Dr Tyndall into that sanctuary of minuteness and of power where molecules obey the laws of their existence, clash together in fierce collision, or grapple in yet more fierce embrace, building up in secret the forms of visible things.

But who will lead me into that still more hidden and dimmer region where Thought weds Fact, where the mental operation of the mathematician and the physical action of the molecules are seen in their true relation? Does not the way to it pass through the very den of the metaphysician, strewed with the remains of former explorers, and abhorred by every man of science? It would indeed be a foolhardy adventure for me to take up the valuable time of the Section by leading you into those speculations which require, as we know, thousands of years even to shape themselves intelligibly.

But we are met as cultivators of mathematics and physics. In our daily work we are led up to questions the same in kind with those of metaphysics; and we approach them, not trusting to the native penetrating power of our own minds, but

trained by a long-continued adjustment of our modes of thought to the facts of external nature.

As mathematicians, we perform certain mental operations on the symbols of number or of quantity, and, by proceeding step by step from more simple to more complex operations, we are enabled to express the same thing in many different forms. The equivalence of these different forms, though a necessary consequence of self-evident axioms, is not always, to our minds, self-evident; but the mathematician, who by long practice has acquired a familiarity with many of these forms, and has become expert in the processes which lead from one to another, can often transform a perplexing expression into another which explains its meaning in more intelligible language.

As students of Physics we observe phenomena under varied circumstances, and endeavour to deduce the laws of their relations. Every natural phenomenon is, to our minds, the result of an infinitely complex system of conditions. What we set ourselves to do is to unravel these conditions, and by viewing the phenomenon in a way which is in itself partial and imperfect, to piece out its features one by one, beginning with that which strikes us first, and thus gradually learning how to look at the whole phenomenon so as to obtain a continually greater degree of clearness and distinctness

But when the student has become acquainted with several different sciences, he finds that the mathematical processes and trains of reasoning in one science resemble those in another so much that his knowledge of the one science may be made a most useful help in the study of the other. When he examines into the reason of this, he finds that in the two sciences he has been dealing with systems of quantities, in which the mathematical forms of the relations of the quantities are the same in both systems, though the physical nature of the quantities may be utterly different. He is thus led to recognize a classification of quantities on a new principle, according to which the physical nature of the quantity is subordinated

to its mathematical form. This is the point of view which is characteristic of the mathematician; but it stands second to the physical aspect in order of time, because the human mind, in order to conceive of different kinds of quantities, must have them presented to it by nature.

Now a truly scientific illustration is a method to enable the mind to grasp some conception or law in one branch of science, by placing before it a conception or a law in a different branch of science, and directing the mind to lay hold of that mathematical form which is common to the corresponding ideas in the two sciences, leaving out of account for the present the difference between the physical nature of the real phenomena.

The correctness of such an illustration depends on whether the two systems of ideas which are compared together are really analogous in form, or whether, in other words, the corresponding physical quantities really belong to the same mathematical class. When this condition is fulfilled, the illustration is not only convenient for teaching science in a pleasant and easy manner, but the recognition of the formal analogy between the two systems of ideas leads to a knowledge of both, more profound than could be obtained by studying each system separately.

There are men who, when any relation or law, however complex, is put before them in a symbolical form, can grasp its full meaning as a relation among abstract quantities. Such men sometimes treat with indifference the further statement that quantities actually exist in nature which fulfill this relation. The mental image of the concrete reality seems rather to disturb than to assist their contemplations. But the great majority of mankind are utterly unable, without long training, to retain in their minds the unembodied symbols of the puremathematician, so that, if science is ever to become popular, and yet remain scientific, it must be by a profound study and a copious application of those principles

of the mathematical classification of quantities which, as we have seen, lie at the root of every truly scientific illustration.

There are, as I have said, some minds which can go on contemplating with satisfaction pure quantities presented to the eye by symbols, and to the mind in a form which none but mathematicians can conceive. There are others who feel more enjoyment in following geometrical forms, which they draw on paper, or build up in the empty space before them. Others, again, are not content unless they can project their whole physical energies into the scene which they conjure up. They learn at what a rate the planets rush through space, and they experience a delightful feeling of exhilaration. They calculate the forces with which the heavenly bodies pull at one another, and they feel their own muscles straining with the effort.

To such men momentum, energy, mass are not mere abstract expressions of the results of scientific inquiry. They are words of power, which stir their souls like the memories of childhood. For the sake of persons of these different types, scientific truth should be presented in different forms, and should be regarded as equally scientific whether it appears in the robust form and the vivid colouring of a physical illustration, or in the tenuity and paleness of a symbolical expression.

The mutual action and reaction between the different departments of human thought is so interesting to the student of scientific progress. Physical research is continually revealing to us new features of natural processes, and we are thus compelled to search for new forms of thought appropriate to these features. Hence the importance of a careful study of those relations between mathematics and Physics which determine the conditions under which the ideas derived from one department of physics may be safely used in forming ideas to be employed in a new department.

The figure of speech or of thought by which we transfer the language and ideas of a familiar science to one with which we are less acquainted may be called Scientific Metaphor.

These generalized forms of elementary ideas may be called metaphorical terms in the sense in which every abstract term is metaphorical. The characteristic of a truly scientific system of metaphors is that each term in its metaphorical use retains all the formal relations to the other terms of the system which it had in its original use. The method is then truly scientific—that is, not only a legitimate product of science, but capable of generating science in its turn.

There are certain electrical phenomena, again, which are connected together by relations of the same form as those which connect dynamical phenomena. To apply to these the phrases of dynamics with proper distinctions and provisional reservations is an example of a metaphor of a bolder kind; but it is a legitimate metaphor if it conveys a true idea of the electrical relations to those who have been already trained in dynamics.

Suppose, then, that we have successfully introduced certain ideas belonging to an elementary science by applying them metaphorically to some new class of phenomena. It becomes an important philosophical question to determine in what degree the applicability of the old ideas to the new subject may be taken as evidence that the new phenomena are physically similar to the old.

The best instances for the determination of this question are those in which two different explanations have been given of the same thing. The most celebrated case of this kind is that of the corpuscular and the undulatory theories of light. Up to a certain point the phenomena of light are equally well explained by both; beyond this point, one of them fails. To understand the true relation of these theories in that part of the field where they seem equally applicable

Both these theories are found to explain not only the phenomena by the aid of which they were originally constructed, but other phenomena, which were not thought of or perhaps not known at the time; and both have independently arrived at the same numerical result, which gives the absolute velocity of light in terms of electrical quantities. That theories apparently so fundamentally opposed should have so large a field of truth common to both is a fact the philosophical importance of which we cannot fully appreciate till we have reached a scientific altitude from which the true relation between hypotheses so different can be seen.

I shall only make one more remark on the relation between Mathematics and Physics. In themselves, one is an operation of the mind, the other is a dance of molecules. The molecules have laws of their own, some of which we select as most intelligible to us and most amenable to our calculation. We form a theory from these partial data, and we ascribe any deviation of the actual phenomena from this theory to disturbing causes. At the same time we confess that what we call disturbing causes are simply those parts of the true circumstances which we do not know or have neglected, and we endeavour in future to take account of them. We thus acknowledge that the so-called disturbance is a mere figment of the mind, not a fact of nature, and that in natural action there is no disturbance.